[ 科学技術・大学 ]

【電子版】スパコンで大規模構造物の最適形状生成、デンマーク工科大が新手法(動画あり)

(2017/10/8 11:00)

  • 大型旅客機の主翼部分

B777主翼を再設計、最大で5%重量削減

生物の自然選択を真似た仕組みをアルゴリズムに取り入れ、大型旅客機の主翼の内部構造をスーパーコンピューターで最初から設計したところ、本物の翼に比べて重量を2−5%削減できることが研究で示された。最適形状生成の新しい手法を開発したのはデンマーク工科大学機械工学部のニールス・オーゲ(Niels Aage)准教授らのチーム。

これまでスパコンで設計できるのは航空機の部品やシンプルな構造にとどまっていたが、こうした詳細設計ツールが将来、風力発電のタービンやタワーマスト、地震に強いビル、橋などさまざまな大型構造物に応用できる可能性があるとしている。成果は5日付の英科学誌ネイチャーに掲載された。

コンピューターで構造設計を行う場合、2次元(2D)のピクセル(画素)に相当する3次元(3D)の「ボクセル」を表示単位として使う。ただ、これまで最適形状設計が適用できる3Dモデルは500万ボクセルが限界だった。今回、それを約200倍の11億ボクセルにまで拡張。大型構造物の詳細設計にも適用できるようにし、長さ25メートルのボーイング777の主翼の内部構造をフランスのスパコン「キュリー」に5日間かけて計算させた。

鳥の骨の構造に類似

その結果、主翼内部の主要部材であるスパーやリブ、ストラットがこれまでのような直線構造ではなく、湾曲し、鳥のくちばしに見られる生物の骨組みと似た複雑な構造が出現した。こうした空間の多い構造で強度をこれまでと同じに保ちながら、200−500キログラムの主翼の軽量化が可能になり、1機当たり年間40-200トンの航空燃料削減につながるかもしれないとした。

ただし製造は3Dプリンター頼み

この最適形状設計ツールが適用できる大きさもミリメートルから数十メートルと幅広い。ただ、問題は設計された構造が入り組んでいて複雑になること。現在の製造技術でこうした主翼の量産化は実現困難と見られ、大型の3Dプリンティング技術が必要になるという。

【米サイエンス誌による動画解説(AAAS/Science)】

(2017/10/8 11:00)

関連リンク

おすすめコンテンツ

ゴム補強繊維の接着技術

ゴム補強繊維の接着技術

事例で解決!SCMを成功に導く需給マネジメント

事例で解決!SCMを成功に導く需給マネジメント

集まれ!設計1年生 はじめての締結設計

集まれ!設計1年生 はじめての締結設計

これで差がつく SOLIDWORKSモデリング実践テクニック

これで差がつく SOLIDWORKSモデリング実践テクニック

NCプログラムの基礎〜マシニングセンタ編 上巻

NCプログラムの基礎〜マシニングセンタ編 上巻

金属加工シリーズ 研削加工の基礎 上巻

金属加工シリーズ 研削加工の基礎 上巻

Journagram→ Journagramとは

ご存知ですか?記事のご利用について

カレンダーから探す

閲覧ランキング
  • 今日
  • 今週

ソーシャルメディア

電子版からのお知らせ

日刊工業新聞社トピックス

セミナースケジュール

イベントスケジュール

もっと見る

PR

おすすめの本・雑誌・DVD

ニュースイッチ

企業リリース Powered by PR TIMES

大規模自然災害時の臨時ID発行はこちら

日刊工業新聞社関連サイト・サービス

マイクリップ機能は会員限定サービスです。

有料購読会員は最大300件の記事を保存することができます。

ログイン