企業リリース Powered by PR TIMES

PR TIMESが提供するプレスリリースをそのまま掲載しています。内容に関する質問 は直接発表元にお問い合わせください。また、リリースの掲載については、PR TIMESまでお問い合わせください。

化学分野のAI・機械学習クラウドサービス「Datachemical LAB」に汎用的に変数重要度を計算する機能をリリース

(2023/8/17)

カテゴリ:商品サービス

リリース発行企業:データケミカル株式会社

化学分野のAI・機械学習クラウドサービス「Datachemical LAB」に汎用的に変数重要度を計算する機能をリリース

データケミカル株式会社(代表取締役:吉丸昌吾、本社:東京都渋谷区)は、展開する化学分野のAI・機械学習クラウドサービス「Datachemical LAB(データケミカルラボ)」にて汎用的に変数重要度を計算する機能を2023年8月17日よりリリースいたします。




○機械学習活用における予測モデルのブラックボックス問題

化学産業での新規の材料開発では、原料や配合、製造方法など実験条件の組み合わせは膨大にあり、従来技術者が知見や経験をもとに多大な労力を掛けて担っております。

現在様々な化学メーカーにてAI・機械学習を用いて、実験データをもとに材料の物性・性状(目的変数)とその製造条件(説明変数)の関係性を学習し、目標とする物性・性状をもつ材料の製造条件を予測して開発プロセスを効率化させる取り組みが進んでおります。しかし課題となるのが予測モデルのブラックボックス問題です。機械学習の計算プロセスが複雑で、予測の根拠を理解することが難しく、結果に対する信頼性に疑問が生じることがあります。

そこでブラックボックス問題へのアプローチとして、予測モデルにおいてどの変数がより予測に影響を与えているかを測る変数重要度計算を行い、モデルの解釈性を高めることが挙げられます。

○新機能で予測モデルの解釈性が大幅に向上

化学の研究開発AIクラウドサービス「Datachemical LAB」では、化学の技術者がプログラミングなしに様々な新規材料開発において容易に機械学習を活用することができます。

<新機能の特長>
全ての機械学習モデルで変数重要度を計算

データが少ないときや、強い相関をもつ変数同士があるときでも安定的に計算可能



今回の新機能では、CVPFI(Cross-Validated Permutation Feature Importance)と呼ばれる独自のアルゴリズムを使用しております。従来の変数重要度の計算手法が抱えていた、特定の機械学習モデルしか対応できない、データが少ないときなどでは安定的に計算できない、等の課題を改善し、汎用的に計算することができます。

新機能により予測モデルの解釈性が大幅に向上し、様々な技術テーマの研究開発に機械学習をより活用しやすくなります。

予測モデル構築時にCVPFIにチェックすると、各変数の重要度が出力(meanが0以上であれば予測に対して有意に影響)

【Datachemical LABについて】
弊社CTO金子弘昌(明治大学准教授)が運営するデータ化学工学研究室の知見をもとに開発された、化学分野で有用なデータ解析・機械学習プログラムを容易な操作で扱うことが出来るクラウドサービスです。

<サービスの特長>
・活用領域が幅広く、ラボでの実験から量産化までトータルの効率化が図れます。
・少量の実験データでも手順を踏むことで高い予測精度を実現し、短期間で開発目標到達に導けます。
・シンプルな操作画面でプログラミングなしに実行でき、初学者が犯しがちな解析ミスを防げます。

Datachemical LABサービスサイト:https://www.datachemicallab.com/

【会社概要】
会社名:データケミカル株式会社
所在地:東京都渋谷区神宮前6丁目23-4 桑野ビル2階
設立 :2021年10月

代表取締役:吉丸 昌吾


2010年宮崎大学大学院修了(化学工学専攻)後、綜研化学(株)にて高分子材料開発に従事。一時留学し、2017年カリフォルニア大学サンディエゴ校にてMBA取得。帰国後綜研化学(株)にて海外事業開発・国内営業に従事。2019年社内DX推進時に金子と出会い、2021年当社設立、代表取締役就任。



取締役CTO:金子 弘昌

2011年東京大学大学院博士課程修了(化学システム工学専攻)後、東京大学大学院工学系研究科助教を経て、2017年明治大学理工学部応用化学科専任講師としてデータ化学工学研究室(金子研究室)を運営。2020年より准教授。2021年当社設立、取締役CTO就任。
広島大学大学院先進理工系科学研究科客員准教授、大阪大学太陽エネルギー化学研究センター招聘准教授、理化学研究所客員主幹研究員、京都大学大学院理学研究科研究員(非常勤)を兼任。

会社サイト:https://www.datachemical.com/
事業内容:化学分野を専門としたAIクラウドサービスの提供
上記に付随したコンサルティングサービス

本リリース、サービスに関するお問合せ先:
E-Mail:info@datachemical.com TEL:03-6778-2045

企業プレスリリース詳細へ
PRTIMESトップへ

※ ニュースリリースに記載された製品の価格、仕様、サービス内容などは発表日現在のものです。その後予告なしに変更されることがありますので、あらかじめご了承下さい。

Journagram→ Journagramとは

おすすめコンテンツ

ゴム補強繊維の接着技術

ゴム補強繊維の接着技術

事例で解決!SCMを成功に導く需給マネジメント

事例で解決!SCMを成功に導く需給マネジメント

集まれ!設計1年生 はじめての締結設計

集まれ!設計1年生 はじめての締結設計

これで差がつく SOLIDWORKSモデリング実践テクニック

これで差がつく SOLIDWORKSモデリング実践テクニック

NCプログラムの基礎〜マシニングセンタ編 上巻

NCプログラムの基礎〜マシニングセンタ編 上巻

金属加工シリーズ 研削加工の基礎 上巻

金属加工シリーズ 研削加工の基礎 上巻

ご存知ですか?記事のご利用について

カレンダーから探す

閲覧ランキング
  • 今日
  • 今週

ソーシャルメディア

電子版からのお知らせ

日刊工業新聞社トピックス

セミナースケジュール

イベントスケジュール

もっと見る

PR

おすすめの本・雑誌・DVD

ニュースイッチ

企業リリース Powered by PR TIMES

大規模自然災害時の臨時ID発行はこちら

日刊工業新聞社関連サイト・サービス

マイクリップ機能は会員限定サービスです。

有料購読会員は最大300件の記事を保存することができます。

ログイン