企業リリース Powered by PR TIMES

PR TIMESが提供するプレスリリースをそのまま掲載しています。内容に関する質問 は直接発表元にお問い合わせください。また、リリースの掲載については、PR TIMESまでお問い合わせください。

Appier、AIの国際会議「AAAI-18」でクリエイティブ領域向けAIを紹介

(2018/2/13)

カテゴリ:その他

リリース発行企業:Appier Japan株式会社

Appier、AIの国際会議「AAAI-18」でクリエイティブ領域向けAIを紹介

~最先端の深層学習技術を衣料デザインに適用する独自の手法~


AI(人工知能)テクノロジー企業のAppier(エイピア、以下Appier、本社:台湾、共同創業者/CEO:チハン・ユー)は、第32回AAAI Conference on Artificial Intelligence(AAAI 2018 https://aaai.org/Conferences/AAAI-18/)において、AIがクリエイティブな世界にも応用できることを示す先駆的な研究を発表しました。AIによって人間が魅力的と感じるようなものをデザインすることは、衣料業界において重要な変革の要素となっています。今回のAppierの研究は、AIがデザイナーの日々の業務を支援する日が近づいていることを示すものとなりました。AAAI 2018は、AIを主題とする世界有数の国際会議の1つであり、今年は2月2日から7日まで米国ルイジアナ州ニューオーリンズで開催されました。

Appierのヨン・シャン・シー(Yong-Siang Shih)、カイ・ユェン・チャン(Dr. Kai-Yueh Chang)、シュアン・テン・リン(Dr. Hsuan-Tien Lin)ならびに台湾国立清華大学のミン・サン(Min Sun)教授で構成される研究チームは、美しいデザインの事例を観察・学習させることで人間の複数の衣料品を組み合わせたり、デザインする能力を真似るAIモデルを初めて開発しました。同チームは、このモデルを、新しく開発されたProjected Compatibility Distance(PCD)と深層学習技法を組み合わせることで実現させました。PCDは、アイテムの互換性の程度を認識する深層学習技法です。


Appierが AAAI-18で発表した、服に合う、お勧めの靴・小物のコーディネーションや魅力的な衣料品のデザインを可能にするAIの機能を紹介する図。
PCDは、GAN(1)(Generative Adversarial Networks、敵対的生成ネットワーク)独自のアプリケーション上で動作させたところ、何点かの衣料品の画像を入力すると、これまでにない衣料品の組み合わせを提示しました。この出力結果から、AIはデザイナーがどのように多様な衣料品を組み合わせるのか、どのように新しいデザインを作り上げるのかを理解していることがわかります。


(1) Generative Adversarial Networks (GAN) とはGoogle Brain (AI研究部門) のIan Goodfellowが開発したニューラルネットワーク。GANは様々なバリエーションがあり多彩な機能を持っている。GANはニューラルネットワークの技法で二つの対峙する (Adversarial) ネットワークがコンテンツ (イメージや音声など) を生成する。

Appierの共同創業者 兼CEOでもあるチハン・ユーは、次のように述べています。「今回の成果は、AIの創造力を引き出すことに成功した、大きな一歩といえるでしょう。Appierは、創造力をはじめ、生活のあらゆる場面で人間を支援するAIを開発・提供することを目指しています。われわれは創造力においてAIが人間を代替するのではなく、人間の能力をさらに広げる手伝いをすると考えています。Appierは、AIにおける学術研究とビジネスとの垣根をなくす取り組みを行っており、当社の社員による今回の画期的な研究結果は、当社が日々取り組んでいるさまざまな研究プロジェクトの一例です。」

Appierのチーフデータサイエンティストであるシュアン・テン・リンは、次のように述べています。「この論文を作成したチームは、私たちのモデルを適用する対象として衣料デザインを選びました。その理由は、衣料品のコーディネーションには、異なる衣料品を組み合わせることの複雑性と主観性があると同時にビジネスにも応用できる潜在性があるからです。われわれのチームは、アイテムの互換性とその関係性を距離で表すCompatibility Distance とGANを深層学習に適用した独自のアプリケーションを使うことでAIの創造力に関する潜在性に関しても紹介しようと考えていました。われわれのモデルが作ったコーディネーションやデザインが人間によるテストに合格したという成果は、今後の研究にとって励みとなるものです。」

『Compatibility Family Learning for Item Recommendation and Generation』と題された全文(英語)は、https://arxiv.org/pdf/1712.01262.pdfをご覧ください。

Appier について
Appier は、AI(人工知能)テクノロジー企業として、企業や組織の事業課題を解決するためのAI プラットフォームを提供しています。詳細はhttp://www.appier.com/jp/をご覧ください。

企業プレスリリース詳細へ
PRTIMESトップへ

※ ニュースリリースに記載された製品の価格、仕様、サービス内容などは発表日現在のものです。その後予告なしに変更されることがありますので、あらかじめご了承下さい。

Journagram→ Journagramとは

おすすめコンテンツ

ゴム補強繊維の接着技術

ゴム補強繊維の接着技術

事例で解決!SCMを成功に導く需給マネジメント

事例で解決!SCMを成功に導く需給マネジメント

集まれ設計1年生!はじめての締結設計

集まれ設計1年生!はじめての締結設計

これで差がつく SOLIDWORKSモデリング実践テクニック

これで差がつく SOLIDWORKSモデリング実践テクニック

NCプログラムの基礎〜マシニングセンタ編 上巻

NCプログラムの基礎〜マシニングセンタ編 上巻

金属加工シリーズ 研削加工の基礎 上巻

金属加工シリーズ 研削加工の基礎 上巻

ご存知ですか?記事のご利用について

カレンダーから探す

閲覧ランキング
  • 今日
  • 今週

ソーシャルメディア

電子版からのお知らせ

日刊工業新聞社トピックス

セミナースケジュール

イベントスケジュール

もっと見る

PR

おすすめの本・雑誌・DVD

ニュースイッチ

企業リリース Powered by PR TIMES

専門誌・海外ニュースヘッドライン

専門誌

↓もっと見る

大規模自然災害時の臨時ID発行はこちら

日刊工業新聞社関連サイト・サービス

マイクリップ機能は会員限定サービスです。

有料購読会員は最大300件の記事を保存することができます。

ログイン